signer le

Livre d'Or

livre-or-introduction

Caractéristiques physiques

Saturne a la forme d'un ellipsoïde de révolution : la planète est aplatie aux pôles et renflée à l'équateur, conséquence de sa rapide rotation sur elle-même et d'une composition interne extrêmement fluide. Par convention, la surface de la planète est définie comme l'endroit où la pression atmosphérique est égale à 1 bar (100 000 Pa) et est utilisée comme point de référence pour les altitudes. Ses rayons équatoriaux et polaires diffèrent de près de 10 % avec 60 268 km contre 54 364 km, ce qui donne un rayon moyen volumétrique de 58 232 km — 9,5 fois plus grand que le rayon terrestre. Cela revient à un aplatissement de 0,098, le plus grand des planètes géantes — et des planètes du Système solaire en général.


Saturne est la deuxième planète la plus massive du Système solaire, d'une masse 3,3 fois moindre que Jupiter, mais 5,5 fois supérieure à celle de Neptune et 6,5 fois supérieure à celle d'Uranus. Jupiter et Saturne représentant respectivement 318 fois et 95 fois la masse terrestre, les deux planètes possèdent 92 % de la masse planétaire totale du Système solaire.


La gravité de la surface le long de l'équateur, 8,96 m/s2, vaut 90 % de celle à la surface de l'équateur terrestre. Cependant, la vitesse de libération à l'équateur est de 35,5 km/s, soit environ trois fois plus que sur Terre.


Saturne est la planète la moins dense du Système solaire avec 0,69 g/cm3, soit environ 70 % de la densité de l'eau. En effet, bien que le noyau de Saturne soit considérablement plus dense que l'eau, la densité moyenne est abaissée en raison de son importante atmosphère. Pour illustrer cela, il est parfois évoqué que s'il existait un océan assez grand pour la contenir, elle flotterait. En réalité, il serait évidemment impossible d'avoir une planète avec un océan suffisamment profond - elle serait de l'ordre de grandeur du Soleil et ne serait ainsi pas stable - et la cohésion de Saturne ne serait pas maintenue car elle est gazeuse, son noyau très dense coulerait donc en conséquence.



















Structure interne

Saturne est classée comme une géante gazeuse car elle est principalement composée d'hydrogène et d'hélium. Ainsi, les modèles planétaires standards suggèrent que l'intérieur de Saturne est similaire à celui de Jupiter, avec un noyau rocheux entouré d'hydrogène et d'hélium ainsi que de traces de substances volatiles — aussi appelées "glaces".


Le noyau rocheux serait d'une composition similaire à la Terre, constitué de silicates et de fer, mais plus dense. Il est estimé à partir du champ gravitationnel de la planète et des modèles géophysiques des planètes gazeuses que le noyau doit avoir une masse allant de 9 à 22 fois masses terrestres, atteignant un diamètre d'environ 25 000 km. Celui-ci est entouré d'une couche d'hydrogène métallique liquide plus épaisse, suivie d'une couche liquide d'hydrogène moléculaire et d'hélium qui se transforme progressivement en gaz en fonction de la croissance de l'altitude. La couche la plus externe s'étend sur 1 000 km et se compose de gaz. Aussi, la majeure partie de la masse de Saturne n'est pas en phase de gaz car l'hydrogène devient liquide lorsque la densité est supérieure à 0,01 g/cm3, cette frontière étant atteinte à la surface d'une sphère correspondant à 99,9 % de la masse de Saturne.

















Saturne possède une température interne très élevée, atteignant 12 000 K (11 727 °C) en son cœur et irradiant, comme Jupiter, plus d'énergie dans l'espace qu'elle n'en reçoit du Soleil — 1,78 fois environ. L'énergie thermique de Jupiter est générée par le mécanisme de Kelvin-Helmholtz de compression gravitationnelle lente, mais un tel processus à lui seul n'est pas suffisant pour expliquer la production de chaleur de Saturne car elle est moins massive. Un mécanisme alternatif ou supplémentaire serait la génération de chaleur par la « pluie » de gouttelettes d'hélium dans les profondeurs de Saturne. Au fur et à mesure que les gouttelettes descendent à travers l'hydrogène de densité inférieure, le processus libérerait ainsi de la chaleur par frottement et laisserait les couches externes de Saturne appauvries en hélium. Ces gouttelettes descendantes peuvent s'être accumulées dans une coquille d'hélium entourant le noyau. Il est suggéré que des pluies de diamants se produisent à l'intérieur de Saturne, tout comme au sein de Jupiter et des géantes de glace Uranus et Neptune.


Cependant, étant donnée sa distance au Soleil, la température de Saturne descend rapidement jusqu'à atteindre 134 K (−139 °C) à 1 bar puis 84 K (−189 °C) à 0,1 bar, pour une température effective de 95 K (−178 °C).


Atmosphère

Composition

La haute atmosphère de Saturne est constituée à 96,3 % d'hydrogène et à 3,25 % d'hélium en volume. Cette proportion d'hélium est significativement plus faible que l'abondance de cet élément dans le Soleil. La quantité d'éléments plus lourds que l'hélium (appelée métallicité) n'est pas connue avec précision, mais les proportions sont supposées correspondre aux abondances primordiales issues de la formation du Système solaire ; la masse totale de ces éléments est estimée à 19 à 31 fois celle de la Terre, une fraction significative étant située dans la région du noyau de Saturne. Des traces de méthane CH4, d'éthane C2H6, d'ammoniac NH3, d'acétylène C2H2 et de phosphine PH3 ont également été détectées.


Le rayonnement ultraviolet du Soleil provoque une photolyse du méthane dans la haute atmosphère, conduisant à la production d'hydrocarbures, les produits résultants étant transportés vers le bas par les tourbillons de turbulence et par diffusion. Ce cycle photochimique est modulé par le cycle saisonnier de Saturne.




















































Couches de nuages

De manière similaire à Jupiter, l'atmosphère de Saturne est organisée en bandes parallèles, même si ces bandes sont moins contrastées et plus larges près de l'équateur. Ces bandes sont causées par la présence de méthane dans l'atmosphère planétaire, celles-ci étant d'autant plus foncées que la concentration est grande.


Le système nuageux de Saturne n'est observé pour la première fois que lors des missions Voyager dans les années 1980. Depuis, les télescopes terrestres ont progressé et permettent de pouvoir suivre l'évolution de l'atmosphère saturnienne. Ainsi, des caractéristiques courantes sur Jupiter, comme les orages ovales à longue durée de vie, sont retrouvées sur Saturne ; par ailleurs, la nomenclature utilisée pour décrire ces bandes est la même que sur Jupiter. En 1990, le télescope spatial Hubble observe un très grand nuage blanc près de l'équateur de Saturne qui n'était pas présent lors du passage des sondes Voyager, et en 1994 une autre tempête de taille plus modeste est observée.


La composition des nuages de Saturne varie avec la profondeur et la pression croissante. Dans les régions les plus hautes, où les températures évoluent entre 100 K (−173 °C) et 160 K (−113 °C) et la pression entre 0,5 et 2 bars, les nuages se composent de cristaux d’ammoniac. Entre 2,5 et 9 bars se trouve de la glace d’eau H2O à des températures de 185 K (−88 °C) à 270 K (−3 °C). Ces nuages s’entremêlent à des nuages de glace d’hydrosulfure d’ammonium NH4SH comprise entre 3 et 6 bars, avec des températures de 190 K (−83 °C) à 235 K (−38 °C). Enfin, les couches inférieures, où les pressions sont comprises entre 10 et 20 bars et les températures de 270 K (−3 °C) à 330 K (57 °C), contiennent une région de gouttelettes d'eau avec de l'ammoniaque (ammoniac en solution aqueuse).


Dans les images transmises en 2007 par la sonde Cassini, l'atmosphère de l'hémisphère nord apparaît bleue, de façon similaire à celle d'Uranus. Cette couleur est probablement causée par diffusion Rayleigh.



Magnétosphère

Saturne possède un champ magnétique intrinsèque qui a une forme simple et se comporte comme un dipôle magnétique, presque aligné avec l'axe de rotation de la planète et dont le pôle nord magnétique correspond au pôle sud géographique. Il est découvert en 1979 par la sonde Pioneer 11 lorsqu'elle mesure son intensité : sa force à l'équateur est d'environ 0,2 Gauss (20 µT), soit un vingtième du champ de Jupiter et légèrement plus faible que le champ magnétique terrestre. En conséquence, la magnétosphère de Saturne - cavité créée dans le vent solaire par le champ magnétique de la planète - est la deuxième plus grande du Système solaire mais reste beaucoup plus petite que celle de Jupiter. La magnétopause, frontière entre la magnétosphère de Saturne et le vent solaire, se trouve à seulement environ vingt fois le rayon de Saturne (soit 1 200 000 km) du centre de la planète, tandis que la queue magnétique s'étire derrière sur des centaines de fois le rayon saturnien.










































Très probablement, le champ magnétique est généré de la même manière que celui de Jupiter avec des courants de convection dans la couche d'hydrogène métallique liquide créant un effet dynamo. Cette magnétosphère est efficace pour détourner les particules du vent solaire. L’interaction de la magnétosphère de Saturne et des vents solaires, comme dans le cas de la Terre, produit des aurores boréales sur les pôles de la planète dans le domaine du visible, de l’infrarouge et de l’ultraviolet.


La magnétosphère de Saturne est remplie de plasma originaire de la planète et de ses satellites naturels, notamment d'Encelade qui éjecte jusqu’à 600 kg/s de vapeur d’eau par ses geysers situés à son pôle sud ou de part l'atmosphère de Titan dont les particules ionisées interagissent avec la magnétosphère. Par ailleurs, il se trouve à l’intérieur de la magnétosphère une ceinture de radiation, similaire à la ceinture de Van Allen pour la Terre, qui contient des particules d’énergie pouvant atteindre la dizaine de mégaélectronvolts.